Evaluation of the relationship between the cycle threshold (Ct) of RTqPCR and COVID-19 clinical symptoms in outpatients
PDF (Español (España))
ePUB (Español (España))

Keywords

Diagnosis
sample
tests

How to Cite

Ortega Pérez, C. A., Rivera, N. R., Vindell, J. J., & Ayala, M. Y. (2024). Evaluation of the relationship between the cycle threshold (Ct) of RTqPCR and COVID-19 clinical symptoms in outpatients. Revista Minerva: Multidisciplinary Scientific Journal of the Universidad De El Salvador, 7(4), 21–34. https://doi.org/10.5377/revminerva.v7i4.19264

Abstract

The gold standard diagnosis (GSDP) for COVID-19 is amplification of viral RNA by retrotranscription and real-time polymerase chain reaction (RT-qPCR), using a nasopharyngeal swab sample (NPS), processed with a traditional RNA extraction. Regarding the sample, some substitutions have been used in the diagnostic process, such as saliva and nasopharyngeal secretion samples with auto collection without the need to use a swab to reduce the time and cost of these tests and mainly to reduce the biological risk of health personnel. The data used in RT-qPCR for its positivity or negativity is the value of the threshold cycle (Ct), and according to some studies this data can provide an important tool as a prognostic value in the clinical epidemiological context of the patient, influencing the therapeutic decision making of health personnel, with a possible positive impact on the clinical evolution of patients; however, several of the published studies show low or in some cases no significant relationship between the Ct value and the clinical evolution of the patient. OBJECTIVE: To evaluate the relationship between RTqPCR cycling threshold (Ct) and clinical COVID-19 in outpatients. METHODOLOGY: 479 samples from patients who met the inclusion criteria were processed, amplification was performed by two already standardized RT-qPCR protocols of SARS CoV2 E and RdRp genes, 4 positive samples were sequenced by NGS for diagnostic confirmation.  Factors related (signs and symptoms) to SARS-CoV-2 viral load were evaluated. Viral load was determined based on RT-qPCR reaction and threshold value (CT). Two groups were stratified; high viral load (Ct<30) and low viral load (Ct>30). The data were recorded in an excel spreadsheet and subsequently analyzed with the statistical software R 4.4.1. from Project for Statistical Computing. Values of p≤0.05 were considered significant, the strength of the association was measured with the Odds Ratio and its confidence intervals (95% CI). RESULTS: Of 479 samples processed, 87 samples were positive, the highest severity(N:3) and lethality(N:1) variables clustered in Ct< 30, only one severe patient clustered in Ct>30. The rest (N:84) without mortality or severity clustered similarly in both groups Ct<30 and Ct>30, in all cases with a weak or no relationship significance with respect to the Ct threshold (p ≥ 0.05). Similarly, no significant impact of the vaccine on the Ct value was observed. CONCLUSION: The usefulness of Ct as a predictor of severity of COVID-19 and for other respiratory viral infections should be subjected to more rigorous studies, meanwhile given the available information and the results of the present study confirm that the usefulness of the Ct threshold in the clinical prognosis of COVID-19 patients is accompanied by certain limitations. In any case, if the Ct value is used as a prognostic factor in COVID-19 patients, it should be done with caution and awareness of the limitations.

https://doi.org/10.5377/revminerva.v7i4.19264
PDF (Español (España))
ePUB (Español (España))

References

Abraham, J. P., Plourde, B. D., & Cheng, L. (2020). Using heat to kill SARS-CoV-2. Reviews in Medical Virology, 30(5), 8–10. https://doi.org/10.1002/rmv.2115

Al Bayat, S., Mundodan, J., Hasnain, S., Sallam, M., Khogali, H., Ali, D., Alateeg, S., Osama, M., Elberdiny, A., Al-Romaihi, H., & Al-Thani, M. H. J. (2021). Can the cycle threshold (Ct) value of RT-PCR test for SARS CoV2 predict infectivity among close contacts? Journal of Infection and Public Health, 14(9), 1201–1205. https://doi.org/10.1016/j.jiph.2021.08.013

Aykac, K., Cura Yayla, B. C., Ozsurekci, Y., Evren, K., Oygar, P. D., Gurlevik, S. L., Coskun, T., Tasci, O., Demirel Kaya, F., Fidanci, I., Tasar, M. A., Alp, A., Cengiz, A. B., Karahan, S., & Ceyhan, M. (2021). The association of viral load and disease severity in children with COVID-19. Journal of Medical Virology, 93(5), 3077–3083. https://doi.org/10.1002/jmv.26853

Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92(4), 418–423. https://doi.org/10.1002/jmv.25681

Chimoy-effio, P. J. (2022). Ct Relacion Clasif Clinica. 39(1), 35–44.

Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D. K. W., Bleicker, T., Brünink, S., Schneider, J., Luisa Schmidt, M., GJC Mulders, D., Haagmans, B. L., van der Veer, B., van den Brink, S., Wijsman, L., Goderski, G., Romette, J.-L., Ellis, J., Zambon, M., … Chantal, R. (2020a). Detection of 2019 -nCoV by RT-PCR. Euro Surveill, 25(3), 1–8.

Corman, V., Bleicker, T., Brünink, S., Drosten, C., Landt, O., Koopmans, M., & Zambon, M. (2020b). Diagnostic detection of Wuhan coronavirus 2019 by real-time RT-PCR Corman V, Bleicker T, Brünink S, Drosten C, Zambon M, World Health Organization: Diagnostic detection of Wuhan coronavirus 2019 by real-time RT-PCR. Geneva: World Health Organization.

Covax. Colaboración para un acceso equitativo mundial a las vacunas contra la COVID-19. (2024). https://www.who.int/es/initiatives/act-accelerator/covax.

Cumplido-Serrano, A., Ruiz Garcia, A., Segura-Fragoso, A., Olmo-Quintana, V., Micó Pérez, R. M., Barquilla-García, A., & Morán-Bayón, A. (2021). Application of the PCR number of cycle threshold value (Ct) in COVID-19. Semergen, 47(5), 337–341. https://doi.org/10.1016/j.semerg.2021.05.003

Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases, 20(5), 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1

ElBagoury, M., Tolba, M. M., Nasser, H. A., Jabbar, A., & Hutchinson, A. (2020). The find of COVID-19 vaccine: Challenges and opportunities. Journal of Infection and Public Health, 14(3), 389–416. https://doi.org/10.1016/j.jiph.2020.12.025

Fakheran, O., Dehghannejad, M., & Khademi, A. (2020). Saliva as a diagnostic specimen for detection of SARS-CoV-2 in suspected patients: A scoping review. Infectious Diseases of Poverty, 9(1), 1–7. https://doi.org/10.1186/s40249-020-00728-w

Herzog, L. M., Norheim, O. F., Emanuel, E. J., & McCoy, M. S. (2021). Covax must go beyond proportional allocation of covid vaccines to ensure fair and equitable access. The BMJ, 372, 2–4. https://doi.org/10.1136/bmj.m4853

Kampf, G., Voss, A., & Scheithauer, S. (2020). Inactivation of coronaviruses by heat. Journal of Hospital Infection, 105(2), 348–349. https://doi.org/10.1016/j.jhin.2020.03.025

Magleby, R., Westblade, L. F., Trzebucki, A., Simon, M. S., Rajan, M., Park, J., Goyal, P., Safford, M. M., & Satlin, M. J. (2021). Impact of Severe Acute Respiratory Syndrome Coronavirus 2 Viral Load on Risk of Intubation and Mortality among Hospitalized Patients with Coronavirus Disease 2019. Clinical Infectious Diseases, 73(11), E4197–E4205. https://doi.org/10.1093/cid/ciaa851

man Leung, E. C., ying Chow, V. C., ping Lee, M. K., & man Lai, R. W. (2021). Deep throat saliva as an alternative diagnostic specimen type for the detection of SARS-CoV-2. Journal of Medical Virology, 93(1), 533–536. https://doi.org/10.1002/jmv.26258

Martínez, M. J., Basile, L., Sisó-Almirall, A., Cristino, V., Cuesta, G., Hurtado, J. C., Fernandez-Pittol, M., Mosquera, M. M., Soriano, A., Martínez, A., Marcos, M. aA, Vila, J., & Casals-Pascual, C. (2022). Lack of Prognostic Value of SARS-CoV2 RT-PCR Cycle Threshold in the Community. Infectious Diseases and Therapy, 11(1), 587–593. https://doi.org/10.1007/s40121-021-00561-0

Oba, J., Taniguchi, H., Sato, M., Takamatsu, R., Morikawa, S., Nakagawa, T., Takaishi, H., Saya, H., Matsuo, K., & Nishihara, H. (2021). RT-PCR screening tests for SARS-CoV-2 with saliva samples in asymptomatic people: Strategy to maintain social and economic activities while reducing the risk of spreading the virus. Keio Journal of Medicine, 70(2), 35–43. https://doi.org/10.2302/kjm.2021-0003-OA

Perlman, S., & Netland, J. (2009). Coronaviruses post-SARS: Update on replication and pathogenesis. Nature Reviews Microbiology, 7(6), 439–450. https://doi.org/10.1038/nrmicro2147

Pinilla, G., Cruz, C. A., & Navarrete, J. (2020). Diagnóstico molecular de SARS-CoV-2 Molecular diagnosis of SARS-CoV-2. Nova, 18, 35–41.

Rabenau, H. F., Cinatl, J., Morgenstern, B., Bauer, G., Preiser, W., & Doerr, H. W. (2005). Stability and inactivation of SARS coronavirus. Medical Microbiology and Immunology, 194(1–2), 1–6. https://doi.org/10.1007/s00430-004-0219-0

Randolph, H. E., & Barreiro, L. B. (2020). Herd Immunity: Understanding COVID-19. Immunity, 52(5), 737–741. https://doi.org/10.1016/j.immuni.2020.04.012

Reina, J., & Suarez, L. (2020). Evaluación de diferentes genes en la detección por rt-pcr del sars-cov-2 en muestras respiratorias y su evolución en la infección. Revista Espanola de Quimioterapia, 33(4), 292–293. https://doi.org/10.37201/req/045.2020

Sethuraman, N., Jeremiah, S. S., & Ryo, A. (2020). Interpreting Diagnostic Tests for SARS-CoV-2. JAMA - Journal of the American Medical Association, 323(22), 2249–2251. https://doi.org/10.1001/jama.2020.8259

Shah, V. P., Farah, W. H., Hill, J. C., Hassett, L. C., Binnicker, M. J., Yao, J. D., & Hassan Murad, M. (2021). Association between SARS-CoV-2 Cycle Threshold Values and Clinical Outcomes in Patients with COVID-19: A Systematic Review and Meta-analysis. Open Forum Infectious Diseases, 8(9), 1–12. https://doi.org/10.1093/ofid/ofab453

Shoaib, N., Noureen, N., Faisal, A., Zaheer, M., Imran, M., Ahsan, A., Munir, R., & Zaidi, N. (2022). Factors associated with cycle threshold values (Ct-values) of SARS-CoV2-rRT-PCR. Molecular Biology Reports, 49(5), 4101–4106. https://doi.org/10.1007/s11033-022-07360-x

Stegeman I, Ochodo EA, Guleid F, Holtman GA, Yang B, Davenport C, Deeks JJ, Dinnes J, D., S, Emperador D, Hoo) L, Spijker R, Takwoingi Y, Van den Bruel A, Wang J, L. M., & Verbakel JY, Leeflang MMG, C. C.-19 D. T. A. G. (2020. Routine laboratory testing to determine if a patient has COVID-19 (Review), 10.1002/14651858.CD013787.www.cochranelibrary.com. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://doi.org/10.1002/14651858.CD013787.www.cochranelibrary.com

Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C. K., Zhou, J., Liu, W., Bi, Y., & Gao, G. F. (2016). Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology, 24(6), 490–502. https://doi.org/10.1016/j.tim.2016.03.003

Takeuchi, Y., Furuchi, M., Kamimoto, A., Honda, K., Matsumura, H., & Kobayashi, R. (2020). Saliva-based pcr tests for sars-cov-2 detection. Journal of Oral Science, 62(3), 350–351. https://doi.org/10.2334/josnusd.20-0267

Trunfio, M., Venuti, F., Alladio, F., Longo, B. M., Burdino, E., Cerutti, F., Ghisetti, V., Bertucci, R., Picco, C., Bonora, S., Perri, G. Di, & Calcagno, A. (2021). COVID-19 Symptomatic Patients. Viruses, 13(281), 1–14.

Wölfel, R., Corman, V. M., Guggemos, W., Seilmaier, M., Zange, S., Müller, M. A., Niemeyer, D., Jones, T. C., Vollmar, P., Rothe, C., Hoelscher, M., Bleicker, T., Brünink, S., Schneider, J., Ehmann, R., Zwirglmaier, K., Drosten, C., & Wendtner, C. (2020). Virological assessment of hospitalized patients with COVID-2019. Nature, 581(7809), 465–469. https://doi.org/10.1038/s41586-020-2196-x

Woo, P. C. Y., Lau, S. K. P., Lam, C. S. F., Lau, C. C. Y., Tsang, A. K. L., Lau, J. H. N., Bai, R., Teng, J. L. L., Tsang, C. C. C., Wang, M., Zheng, B.-J., Chan, K.-H., & Yuen, K.-Y. (2012). Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavi. Journal of Virology, 86(7), 3995–4008. https://doi.org/10.1128/jvi.06540-11

World Health Organization (WHO). (2020a). Pruebas diagnósticas para el SARS-CoV-2.Orientaciones provisionales.11 de septiembre de 2020. World Health Organization.

World Health Organization (WHO). (2020b). Draft landscape and tracker of COVID-19 candidate vaccines. Who, June, 3. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines%0Ahttps://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines%0Ahttps://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579 (7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Authors who publish in Revista Minerva agree to the following terms: Authors continue as owners of their work, assigning only dissemination rights to Minerva Magazine under the standards of the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license allows others to mix, adapt and build upon the work for any purpose, including commercially, and although new works must also acknowledge the initial author, they do not have to license derivative works under the same terms.

Downloads

Download data is not yet available.